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Abstract—Drones are becoming more popular and may soon 

be ubiquitous. As they enter our everyday environments, it 
becomes critical to ensure their usability through natural 
Human-Drone Interaction (HDI). Previous work in Human-
Robot Interaction (HRI) shows that adding an emotional 
component is part of the key to success in robots’ acceptability. 
We believe the adoption of personal drones would also benefit 
from adding an emotional component. This work defines a range 
of personality traits and emotional attributes that can be encoded 
in drones through their flight paths. We present a user study 
(N=20) and show how well three defined emotional states can be 
recognized. We draw conclusions on interaction techniques with 
drones and feedback strategies that use the drone’s flight path 
and speed. 

Keywords—Drone; UAV; affective computing.  

I. INTRODUCTION 
Until recently, personal drones were generally thought of as 

radio-controlled technologies for hobbyists and professionals 
to take pictures or videos. With recent improvements, drones 
are becoming increasingly autonomous, able to fly a path or 
follow a person without the constant guidance of a “pilot”. We 
expect drones will soon be able to support users in tasks such 
as sports coaching, tour guiding, shopping, and even in search 
and rescue missions. As drones become increasingly prevalent, 
and to facilitate their acceptance in the everyday environment, 
it is critical to create natural HDI.  

Emotions have been shown to have a vital role in human 
interaction and support processes such as perception, decision-
making, empathy, memory, as well as in social interactions [1]. 
Prior work shows that adding this affective dimension can aid 
in intelligent interaction and decision making [1], as well as 
gain social acceptance for robots in domestic environments [2].  

Typically, emotions have been added to robots using facial 
features or by modifying the gait based on context. Drones are 
in essence flying robots. Yet, they present different physical 
characteristics, especially by being non-anthropomorphic or 
when flying further away from users than robots would 
typically move. These differences precludes drone designers 
from using facial features or gait to represent emotional states.  

We envision that adding an emotional state to the drone 
will help reflect its reactions to the user’s commands. For 
instance, the drone could look scared when instructed to fly 
further than the controller’s range. It could look confused when 

 
Fig. 1. Example of three different flight paths to reflect different emotional 
states of the drone (Each personality profile is represented by a color: 
Adventurer Hero: Red, Anti-Social: Blue, Exhausted: White). 

not understanding a command or tired when its battery is low. 
We imagine that the drone’s perceived emotional state will be 
relevant to users and help them to modify their behavior in a 
natural manner. Moreover, encoding data into the flight path 
will better support multiple users’ interactions, as only one 
person can have the remote but all can look at the flight path. 

This paper explores the use of the drones’ movements and 
flight path to encode emotions (Fig. 1). We explore the drones’ 
emotional model space and define three emotional states that 
can best be represented using only the movement of the drone. 
We tested those models in a study (N=20) and show that drone 
movements can indeed portray emotions that can be recognized 
at 60% using a single keyword and at 85% using multiple 
keywords in a realistic outdoor setting. This paper shows that 
emotions can be encoded in a drone’s flight path, opening up 
options for feedback in HDI. 

II. RELATED WORK 
This section discusses the related work on HDI, the effect 

of appearance, and the role of affective computing in HRI. 

A. Human-Drone Interaction (HDI) 
FlyingBuddy [3] envisions several scenarios where the 

drone could extend human abilities, by for example, flying to 
see things beyond the person’s field of view, reporting 
accidents from above, or even supporting people when 
shopping. Schneegass et al. [4] propose using drone-based 



 

flying displays as personal companions (e.g., during sports), as 
a way to actively support people in emergency situations (e.g., 
search and rescue), or as a tour guide.  

To enable such scenarios, we need to provide suitable 
collocated interactions, which can be mediated (i.e., using a 
remote or a phone [5]) or direct (i.e., using voice or gestural 
control [6, 7]). While there is a variety of possible inputs, there 
are few feedback techniques (outputs) for HDI. Prior work 
looked at adding LEDs around a quadcopter to communicate 
direction [8]. Other work modified the drone’s flight path, 
using techniques such as arcing, to communicate directional 
intent [9]. Results show that users felt safer interacting when 
the flight path was communicating intent.  

Recently, the Daedalus [10] drone was augmented with 
head movement, eye color, and the propeller noise to show 
various emotional states, while Sharma et al. [11] modified a 
drone’s flight path following the Laban Effort System [12] to 
communicate affect. In this latter work, the drone performs 
pre-defined movements with four different criteria: Space, 
Weight, Time and Flow. Participants could differentiate 
different states along valence and arousal for all criteria but 
Flow. This work shows promises that people can discriminate 
different characteristics of the drone’s flight path.  

We go beyond this prior work and establish an Emotional 
Model Space for drones and test it in real-world conditions 
with the drone flying outdoors. 

B. Appearance in Human-Robot Interaction (HRI) 
Mavridis [13] discusses verbal and non-verbal human-robot 

collaboration and establishes a list of necessary features 
(desiderata) towards fluid HRI. This list includes affective 
interaction and non-verbal communication. Most prior work on 
affective HRI assumes that the robot is anthropomorphic in 
shape [2, 14], and uses gait, body posture, and even facial 
expressions to convey emotional responses.  

Yet, prior research shows that non-anthropomorphic robots 
can still be perceived as emotional [15], by for example, using 
the robot’s movements as in Hoffman and Ju’s design process 
[16]. Both the Ranger robotic toy box [17], with limited facial 
features, and the mechanical Ottoman [18], with no facial 
features could communicate emotion and intention using only 
horizontal and vertical movement. In a similar fashion, 
Saerbeck and Bartneck [19] use acceleration and curvature  to 
study perceived affect of a mobile robot. Picard [1] explains 
that computers and robots can demonstrate emotional 
expressions through facial displays and noises (i.e., Star Wars’ 
R2D2), and movements (i.e., Disney’s Aladdin’s magic 
carpet). Similarly, Novikova and Watts [20] show that emotion 
can be conveyed through the Approach, Energy, Time, and 
Intensity of non-humanoid robots’ movements. 

These results are encouraging that affect can be perceived 
on drones, despite being non-anthropomorphic in nature, and 
without the need for added facial features, which would not be 
seen at all times during the interaction with a drone. 

C. Models of Emotions in HRI 
The space of emotions that can be recognized in HRI is not 

set in stone. Ekman [21] shows that six facial expressions for 

six emotions can be universally recognized: Anger, Disgust, 
Fear, Happy, Sad, and Surprise. Other prior research evaluates 
facial expressions for the following mental states: Boredom, 
Confusion, Happiness, Interest, and Surprise [22] or Anger, 
Fear, Happiness, Sadness, and Surprise [23]. 

So as to not view emotions as categories (e.g., sad, happy, 
etc.), other researchers think about the dimension of emotions 
as a span between arousal and valence. Russell’s circumplex 
model of affect [24] positions emotions as a combination of 
valence (positive or negative) and intensity (also called 
arousal). Other models add a third component, the dominance, 
to distinguish between emotions with the same level of valence 
and intensity [25]. For instance, Kismet’s [2] emotions are 
mapped around three values: Arousal, Valence, and Stance.  

Given the difference in form factor and limitations in 
expressivity of drones, we could not directly apply any existing 
model to our work and decided to first define an emotional 
model space for drones. 

III. DEFINITION OF EMOTIONAL MODEL SPACE FOR DRONES  
The emotional model space for drones needs to be defined 

based on emotions that can be both recognized by users and 
performed by the drone. To identify which emotions could be 
performed, we collected a list of emotions from the literature 
and ran a design workshop to 1) map those emotions to 
personality models and 2) identify the physical characteristics 
that would best map the models to drone movement.  

A. Emotions vs Personality 
The perceived personality of a robot can effect how willing 

users are to interact with it and establish a relationship with it. 
Fong et. al [26] argue that one way to characterize personality 
is using emotions to portray stereotype personalities. While 
personality can only be evaluated over time, emotional state is 
immediate. Here, we start from an emotional state, identify the 
matching personality type to best design the drone’s 
movements to represent this personality, and go back to the 
corresponding emotional state for the evaluation stage. 

B. Emotions and Personality Traits 
To choose the most suitable range of emotions, we first 

looked at characteristics in people and animals, as prior work 
shows that users tend to interact with drones as if interacting 
with people and pets [27]. We referred to the storytelling 
folklore literature that anthropomorphize characters using 
specific personality traits. We specifically use Walt Disney’s 
version of the Grimms’ Snow White tale, where the seven 
dwarfs represent key personalities that are well known across 
cultures. Similar personalities are found in Peyo’s smurfs, 
which are also well known across cultures. The chosen 
emotional states are: Brave, Dopey, Grumpy, Happy, Sad, 
Scared, Shy, and Sleepy. We chose to leave aside aggressive 
traits, such as Anger, that could be dangerous if implemented 
on a drone given today’s form factors (e.g., quadcopters using 
four propellers that are not fully enclosed). We also removed 
Disgust, as it did not seem to make much sense for HDI. 

C. Definition of Stereotypes of Personality 
We ran a half-day design workshop with five members of 

the design team. Four had experience designing interactions 



 

with drones and one had design experience with robots and 
industrial design. Three were skilled visual designers. During 
the workshop, the eight chosen emotional states were matched 
onto stereotypes of personality models that were designed to 
help develop interactive object behavior [28]. The stereotypes 
of personality use five traits represented by two opposite poles: 
Openess to Experience, Conscientiousness, Agreeableness, 
Extraversion, and Neuroticism (Fig. 3). Each trait has several 
attributes. For example, “Extraversion” is represented by the 
tendency to be sociable, fun-loving, and affectionate versus 
retiring, somber, and reserved.  

The idea was that using the stereotypes of personality 
models would make it easier to define the drone’s movements. 
The chosen stereotypes of personality are derived from [28], 
shown in Fig. 3 and detailed in TABLE I. below. The chosen 
characteristics in TABLE I. were established during the 
workshop, mapping the personality to some of the drone’s 
expected behaviors. Note that the results for Dopey and Sleepy 
were collapsed into a single model. 

TABLE I.  CHARACTERISTICS OF STEREOTYPES OF PERSONALITY AND 
MATCHING EMOTIONS 

Personality 
(Emotional State) Characteristics 

The Big Boss 
(Brave) 

• Confident and Disciplined 
• Looks directly at a person 
• Never goes backwards; instead, turns around and 

moves forward  
• Directly executes commands, although it may take 

charge and do the task its own way 
• Moves quickly and smoothly 

The Goofy 
Comedian 
(Dopey / Sleepy) 

• Delayed reaction time to commands 
(Misunderstands / Slow to react)  

• Moves sloppily / Wobbles (rotating) 
• Uneven rhythm / Slow (starts and stops as it gets 

distracted or needs to rest) 
• Gets distracted, bumps into things, unpredictable 

The Detached 
Philosopher 
(Grumpy) 

• Reserved, uncooperative, impulsive 
• Have to repeat commands (begrudging) 
• Keeps its distance 
• Drags along 

The Lovable 
Romantic 
(Happy) 

• Trusting, affectionate, comfortable close to the user 
• Disciplined but imaginative (follows commands its 

own way, may not take the most direct path) 
• Moves and reacts quickly 
• Constant speed but unpredictable path  

The Peaceful Artist 
(Sad) 

• Self-pitying, keeps its distance 
• Non-responsive (slow, dragging) 
• Gentle and small movements 
• Flies low to the ground 

The Sneaky Spy 
(Scared) 

• Anxious, insecure, suspicious, reserved 
• Nervous, looks around for danger (jerky movements 

and stops to look around) 
• Scared when called  
• Keeps its distance, stays low 

The Model Student 
(Shy) 

• Anxious, insecure 
• Gradually builds trust (starts slow with some delay, 

that changes over time) 
• Takes coaxing for commands 

D. Definition of Movements 
Once the stereotypes of personality were chosen, each 

workshop participant was given one to two, together with a 
representation of the Interaction Vocabulary [29]. This 

vocabulary follows the concept of “aesthetics of interaction” 
and allows the creation of interaction profiles for tangible 
interactive objects using physical interaction attributes. The 
interaction can be slow or fast, stepwise or fluent, etc. Each 
participant was asked to develop a drone interaction profile 
(Fig. 2) according to their assigned stereotype(s) of personality 
(Fig. 3) and using the provided Interaction Vocabulary. Each 
profile was then discussed, so that new ideas could emerge and 
the model could be enriched and validated by the group. 
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Adventurer Hero Drone 

Fig. 2. Interaction profiles for each stereotype of personality.  
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Fig. 3. Wheels of Personality stereotypes matching the eight emotional states defined for drones. 
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E. Redefinition of Personality and Emotional Spaces 
We observed in Fig. 2 that some of the interaction profiles 

were nearly identical and chose to merge these. In particular, 
Dopey, Sleepy, and Sad, together become the Exhausted 
Drone. Grumpy and Shy were merged as the Anti-Social 
Drone, and Happy and Brave joined together as the Adventurer 
Hero Drone. We now have four different stereotypes of 
personality models that constitute the Emotional Model Space 
for drones: 

• The Exhausted Drone 
• The Anti-Social Drone 
• The Adventurer Hero Drone 
• The Sneaky Spy Drone  

Since the Sneaky Spy Drone does not cover any emotional 
state other than Scared, it was not implemented in this first 
study. The interaction profiles allow an implementation of the 
drone’s movements to fit with the stereotype of personality.  

IV. IMPLEMENTING PERSONALITY MODELS ONTO THE DRONE 
This section describes the implementation of the 

stereotypes of personality models onto the drone.  

A. Control Parameters 
The next step in our workshop was to associate physical 

properties of the drone to the Interaction Vocabulary (and 
therefore to the stereotypes of personality models). The 
parameters that can be modified are: the drone’s position and 
direction compared to the user, speed, rotation angles (roll, 
pitch, and yaw), and altitude (Fig. 4), as well as the drone’s 
reaction time and compliance to commands.  

Fig. 2 shows that for speed (Slow-Fast movement), the 
Adventurer Hero Drone is faster than the Anti-Social Drone, 
which is faster than the Exhausted Drone. We tested the 
different personality models with pilot participants to 
determine appropriate speeds  and other parameters (see 
TABLE II. ). 

TABLE II.  CONTROL PARAMETERS FOR THE 3 PERSONALITY MODELS. 

Personality 
Profile 

Control Parameters 
Speed 
(mph) 

Reaction 
Time (sec) Altitude Special 

Movements 

Adventurer Hero 7.7 Instant High Spins / Flips 

Anti-Social 4.4 Delay (2s) Middle Starts and Stops 

Exhausted 1.1 Delay (3s) Low Wobbles 

 
Fig. 4. Drone’s altitude compared to the user for each personality model. 

B. Hardware and Infrastructure 
We used an AR Parrot 2.0 Drone equipped with a WiFi 

network and controlled via a personalized web interface hosted 
on the experimenter’s laptop (Fig. 5).  

 
Fig. 5. Example of the web-based control interface. 

The drone 2.0 API was used to send commands through 
Node.JS server using the Faye messaging system via the 
laptop. The web interface was based on an open source drone 
browser. By choosing the drone’s stereotypes of personality 
model from a drop-down list, parameters such as the speed and 
some pre-defined paths could be set automatically.  

Some of the movements were basic translations, such as up, 
down, left, and right, while some were pre-programmed paths. 
The paths included animation sequences with spins, tilts, and 
flips, as well as movements in the x, y, and z planes for given 
durations. For example, the “acknowledge” function, 
performed when the drone has finished a task, is a simple nod 
in the Adventurer Hero, while the Anti-Social drone first faces 
the user and then turns back around to look away. Some simple 
commands were sequenced to build longer pre-defined paths.  

V. USER STUDY 
To validate whether the stereotypes of personality models 

can be properly recognized, we ran a user study with all three 
models. We test the participant’s recognition of the 
corresponding emotional state rather than the stereotypes of 
personality, allowing for a shorter evaluation time which is 
more realistic given current drone battery life. 

A. Participants 
We ran a within-subjects user study with 20 volunteers 

from 18 to 39 years old (10 female / 10 male) across the three 
personality models. Most had seen a drone before, three had 



 

experience piloting one, and one participant owned a drone. 
Volunteers were shown five tasks per personality model. The 
models and task orders were randomized to avoid interaction 
and learning effects. The study took approximately 30 minutes 
per participant, who were compensated $20 for their time.  

TABLE III.  DRONE TASKS AND HOW THEY DIFFER BASED ON THE 
PERSONALITY MODELS. 

Tasks Differences between personality models 

Navigation 

Stop 

• Loitering animation sequence 
• Distance and height compared to 

participant 
Precise 
Location 

• How direct the path is 
• How quickly the drone reaches its target 

General 
Motion 

Stop  
(after flying) 

• How quickly the drone obeys the 
command after hearing it 

Relative 
to User 

Get Attention 
• How quickly the drone acknowledges the 

participant and where it “looks” 

Take a Selfie 
• How the drone confirms that a picture was 

taken 

A. Tasks and Procedure 
The participant’s role was to observe the drone’s 

movements and reactions to a set of commands and interpret 
them as an emotional state. The participant stood by the 
experimenter and observed the drone’s reaction to a set of five 
tasks per personality model (TABLE III. ). The tasks were 
chosen from a larger set used in prior Human-Drone 
Interaction work [27]. The study was run outdoors on a large 
semi-secluded lawn space, fairly protected from wind gusts. 

B. Measures 
To explore how recognizable the drone’s emotional states 

were to people, we created a questionnaire. As per previous 
studies, given the wide variations in language that people use 
to define emotions and the small number of subjects, we used a 
forced choice paradigm [2]. After seeing all five tasks for one 
personality model, the participant could choose the best 
emotional state that matched the drone’s behavior from eight 
possible labels (i.e., afraid, brave, dopey, grumpy, happy, sad, 
shy, and sleepy) (primary keyword). In a follow-up question, 
they could circle any other labels that they thought could also 
apply (secondary keywords). On a 7-point Likert scale, the 
subjects were also asked to rate the intensity of the emotion 
and the certainty of their answer. They were also asked to write 
down any comments they had. This protocol corresponds to the 
ones found in prior HRI literature [2, 23]. 

VI. RESULTS 
This section describes the results of the user study. 

A. Forced Choice Questionnaire (Primary Keyword) 
The subjects’ responses to the questionnaire are 

summarized in TABLE IV.  We see that the Adventurer Hero 
model is well identified, with 90% of the participants correctly 
identifying one of the corresponding emotional states (happy or 
brave). The Exhausted and Anti-Social models are not 
identified as well, with 45% accuracy only. We see that the 
level of confidence of the participants matches the accuracy 
with 6.3/7 confidence in the Adventurer Hero model compared 
to 5.4 and 4.7 in the Exhausted and Anti-Social models, 

respectively. The same results were found with the intensity of 
the emotion decreasing from 6/7 (Adventurer Hero), to 5.2 
(Exhausted), and to 4.6 (Anti-Social). 

TABLE IV.  SUMMARY OF THE FORCED CHOICE QUESTIONNAIRE 
RESULTS (IN PERCENTAGE OF TOTAL ANSWERS) 

Emotion 

Personality Models 
Exhausted 

(Dopey, Sad, Sleepy) 
Anti-Social 

(Grumpy, Shy) 
Adventurer 

(Happy, Brave) 

Dopey 25 10 10 

Sad   5  

Sleepy 20 15  

Grumpy 30 25  

Shy 5 20  

Happy 10 10 70 
Brave   20 
Afraid 10 10  

 

The average recognition rate of the personality models 
based on the associated emotional states for the drone is 60%. 
This is comparable with early work in HRI using coarse facial 
features [23], which showed 55% recognition amongst adult 
participants in a similar setting. This result is however not as 
good as Kismet’s emotional expressions that can be recognized 
at 77.6% using videos of Kismet moving [2]. 

B. Secondary Keywords 
When using both the primary and secondary, we find a 

large increase in the recognition rate, with the Adventurer Hero 
model being recognized by 100% of the participants, the 
Exhausted Drone recognized by 80% of the participants and 
the Anti-Social drone by 75% of the participants (TABLE V. ). 
This is extremely promising that all three personality models 
can be recognized by people who have little to no previous 
experience with this type of technology.  

TABLE V.  AVERAGE RECOGNITION RATES OF PERSONALITY MODELS 
USING BOTH PRIMARY AND SECONDARY KEYWORDS. 

Condition 
Exhausted 

(Dopey, Sad, 
Sleepy) 

Anti-Social 
(Grumpy, Shy) 

Adventurer 
(Happy, 
Brave) 

Primary 
keyword  

45 45 90 

Primary + 
Secondary 
keyword 

80 75 100 

 

C. Qualitative Data 
We find that when participants chose a specific primary 

keyword for the emotional state, they typically understood 
what the drone was doing but did not always correctly interpret 
its corresponding emotional state. Adding a second keyword 
helped make their choices more accurate.  



 

For example, P19 understood that the Anti-Social drone 
was showing “delayed responses” and even “incomplete 
responses”, but interpreted it as being Dopey (primary 
keyword) and Grumpy (secondary keyword). Similarly P18 
found that the Adventurer Hero Drone “obeyed all commands 
but often with a slight delay and/or with additional flair, like 
whatever it felt like doing”. They also found it “pretty cute, 
especially when it did flips”. The delay mentioned was 
minimal and only due to the WiFi and not to any implemented 
delay. Still, the subject perceived the drone as being “Dopey” 
(primary) and Brave and Happy (secondary).  

We find that participants could properly perceive changes 
in the drone’s behavior, whether they were due to the flight 
path itself, its reaction time, compliance to command, or speed. 
This is extremely promising as this is the first proof that 
drones’ movements themselves can be perceived as portraying 
an emotional state. The following sections give examples of 
the participants’ comments when selecting keywords. 

• Exhausted Drone 

P1 “It kind of wobbled in the air and dropped – tired” 

P3 “Sharp movements but not always very coordinated, 
seems incompliant but bold” 

P4 “It usually messed up the first time or was extremely 
wobbly when flying” 

P7 “Could also be a drunk drone, seemed to like to rest 
a lot by landing” 

P8 “Shakey and stayed low” 

P16 “Slow to respond, disobedient, could be because it's 
mad or stupid” 

P18 

“Since commands didn't really require multiple 
promptings, I figured it was faithful and obedient, so 
when it kept dropping and acting drunk, I 
immediately assumed sleepy” 

 

• Anti-Social Drone 

P1 “There was a part where the drone spun around, which 
was maybe angry or just refusing to do something.” 

P4 “More "obedient"” 

P5 
“The drone was resistant to commands so it made 
me feel as though the drone was displaying 
aggression to the driver” 

P9 “The drone didn't seem to "get it". Just kind of 
moped around” 

P11 “stops after some meters and goes on...not frontal 
facing” 

P16 “Quick to move away, slow to come back” 

P18 “At first I was thinking sad/low energy because it 
took multiple commands every time and it kept flying 

so low and dropping. But at the end, when it was 
disobeying by not stopping, I figured it was capable 
but reluctant” 

• Adventurer Hero Drone 

P1 “Faster responses = brave/happy” 

P2 “mostly thought it was happy because it twirled a lot” 

P3 “The drone danced and did flips, usual indicators of 
happiness. It was fun and exciting to watch.” 

P4 “More distinct actions - flipping, responsiveness” 

P5 “It flew a lot with its nose down so it seemed to me to 
signal bravery” 

P7 “Extra movements made it look like the drone 
couldn't contain its excitement” 

P8 “Moving quickly and all around, doing flips ("fun" things)” 

P9 “It seemed really excited!” 

P13 “Seemed very excited” 

P16 “responded to command quickly, moved quickly, 
extraneous flips give the happy impression” 

P19 “Excess movement/ornamentation, comparable to an 
excited dog” 

VII. DISCUSSION 
This section discusses some of our findings as well as the 

limitations of this study. 

A. Encoding Personalities and Emotional States 
This study shows that there is a space for social drones. The 

emotional model space that we have defined is non-exhaustive, 
but it is a good starting point in developing the area of 
emotional computing with drones. We show that the drone’s 
movements, such as its speed, altitude, and orientation, as well 
as its reactivity, can encode personalities and associated 
emotional states for collocated HDI. We believe that this can 
extend the possibilities in using the drone’s movement as 
feedback to users’ commands. 

B. Drone as Pet 
Several times during the study, participants compared the 

drone to a pet. In the Adventurer Hero model, P1 mentioned 
that the drone looks “like a dog chasing its tail”, P7 said that 
the drone “seemed more like a pet than anything else”, and P19 
noted that the drone was “comparable to an excited dog”. In 
the Anti-Social model, P3 “believed that [the drone] was 
listening to its owner the way a happy pet would”. These 
remarks fit with prior work on interacting with intelligent 
objects [18] and is also consistant with prior findings on 
interacting with drones [27]. 

C. Limitations 
The study was run outdoors, in realistic non-controlled 

conditions. We experienced a certain amount of wind during 



 

the study. P14, for instance, mentions that they are “not sure if 
the wind affected movement pattern that would influence 
emotional impression”. Despite these external factors, 
participants were able to recognize the drone’s flight paths, its 
reactions, and its speed. The personality models were 
recognized at 60% on average across all conditions for single 
keywords and at 85% when also using secondary keywords. 
This shows the robustness of the models and the possibility to 
work with social drones outdoors. 

VIII. FUTURE WORK 
We imagine drones as having their own personalities as 

pets do. Drones would become more interesting objects to 
interact with and the stereotype of personality model could 
bring more realism to the interaction, facilitating their 
acceptability in personal spaces. We could also envision other 
behaviors of the drone, beyond personality traits, such as a 
drone that would mimic one’s emotional state. Drones could 
also support users in behavior change, e.g., by looking sad 
when the user hasn’t exercised for too long or happy when 
going for a run, bringing awareness of how well the person is 
doing. Future work will also include refining the models to 
better match the drone’s behavior with the personality models. 

IX. CONCLUSIONS 
We presented the first exploration into drones’ personality 

models and how to encode emotions into their flight path. We 
believe that drones are a viable platform to become accepted 
sociable entities. We showed that people can precisely identify 
the behavior of the drone by observing its physical movement 
and its response to commands. Participants managed to 
accurately associate this behavior to an emotional state 
corresponding to a personality model. In the future, this might 
be used to inform users of the drone’s intentions and convey 
meaningful feedback that would be hard to convey otherwise.  
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